A Simple One-step Synthesis of *N*-Substituted Isoindolin-1-ones. Diastereofacially Selective Protonation of an Intermediate Isoindolinol

Ronald Grigg,* H.Q. Nimal Gunaratne, and Visuvanathar Sridharan

Department of Chemistry, Queen's University, Belfast BT9 5AG, Northern Ireland

 α -Amino acids and their methyl esters, arylamines, heterocyclic amines and, less efficiently, aryl substituted aliphatic amines, react with *o*-phthaldialdehyde in the presence of acetic acid to give *N*-substituted isoindolin-1-ones in excellent yield; deuteriation studies implicate an isoindolinol intermediate and, when α -amino acids are used, provide evidence of its diastereofacially selective protonation.

We have reported the facile and stereospecific generation of azomethine vlides from imines of α -amino acid esters by a formal 1,2-prototropic shift, (1a) \rightleftharpoons (2a).¹ Free α -amino acids also react with aryl aldehydes to generate the analogous dipole, $(1b) \rightleftharpoons (2b)$, in acetic acid² whilst in other solvents [dimethylformamide (DMF), MeOH, or MeCN] decarboxylation occurs generating a new dipole (3).³ In extending this work we investigated the reaction of o-phthaldialdehyde (4) with α -amino acids in boiling acetic acid (non-decarboxylating conditions). Rapid reaction (5-10 min) occurred to give the N-substituted isoindolin-1-ones (5a-f) (Table 1) in good vield. The α -blocked amino acid (6) reacted similarly (Table 1) to give (5g). The reaction appears to be general (α -amino esters react similarly) and can be carried out in other solvents (MeCN, CHCl₃, or Et₂O) often at much lower temperatures (0-80 °C) with only a catalytic amount of acetic acid. Thus γ -aminobutyric acid gives (7a) (52%), whilst the arylamines (8a-c) give (7b-d) in 70-78% yield. Heterocyclic amines (9) and (10) react with (4) at 0 °C in ether or ether-acetonitrile containing a catalytic amount of acetic acid to give (7e) (82%) and (7f) (91%), respectively. Initial studies suggest the reaction is less efficient with aliphatic amines. Thus dopamine and (4) give (11a) (40%), whilst norepinephrine and (4) give (11b), (26%).

The isoindolin-1-ones (7a—f) are distinguished by a singlet for the ring methylene group in their n.m.r. spectra (CDCl₃ or $[^{2}H_{5}]$ pyridine) at δ 4.65—6.65, whilst in the α -amino acid products (5a—e) this methylene group gives rise to the expected AB pattern since the protons are diastereotopic in this case, e.g. (5d), δ ([$^{2}H_{5}]$ pyridine) 4.42 (d, 1H, CHN) and 5.58 (d, 1H, CHN), J_{gem} 16.9 Hz. When the reaction of (4) and certain amines is carried out at

When the reaction of (4) and certain amines is carried out at low temperatures, and/or in the absence of acetic acid, intermediates of the expected type can be isolated. Thus (12) reacts (0.5% acetic acid in ether, 35 °C, 48 h) with (4) to give the monoimine (13) (72%) whilst phenylhydrazine and (4) (0.5% acetic acid in acetonitrile, 80 °C, 2 h) give (14) (65%) as bright yellow prisms, m.p. 120–121 °C. Secondary amines such as diethylamine and pyrrolidine react with *o*-phthaldialdehyde to give (15a) (71%) and (15b) (84%) respectively as

 $H_{2}N \xrightarrow{N} G = Et$ $H_{2}N \xrightarrow{N} G = Et$

b; $R_2 = [CH_2]_4$

Table 1. Isoindolin-1-ones from α -amino acids and *o*-phthaldialdehyde.

α-Amino acid	$\begin{array}{l} \text{Product} \\ \textbf{(5)}, R^2 = H \end{array}$	Yield (%)
Valine Phenylalanine Serine Alanine Phenylglycine Glycine (6)	a; $R^1 = Pr^i$ b; $R^1 = CH_2Ph$ c; $R^1 = CH_2OH$ d; $R^1 = Me$ e; $R^1 = Ph$ f; $R^1 = H$ (5g, $R^1R^2 = -[CH_2]_{5}-)$	80 80 91 60 67 76 65

Scheme 1

thick yellow oils, the n.m.r. spectra (CDCl₃) of which show that they are mixtures of *cis*- and *trans*-isomers.

Thus (16) (Scheme 1) is a plausible intermediate and two mechanisms were considered for the formation of (5). A 1,3-hydride shift assisted by the hydroxy group of the hydroxy-iminium species (16, arrows)[†] or a deprotonationreprotonation sequence via the isoindolinol (17) could both give rise to an isoindolin-1-one. We were also interested in the lability of H_B, the α -hydrogen atom of the original amino acid. When the reaction of o-phthaldialdehyde and α -amino acids was carried out in [²H₄]acetic acid approximately one deuterium atom was incorporated into the ArCH₂N group.‡ Less deuterium incorporation (ca. 34 vs. 70% ²H₁) occurred when, e.g., alanine methyl ester was used in place of alanine

Table 2. Diastereoisomer ratios of monodeuterio-(18).^a

R in (18)	Ratio from (S)-amino acid	Ratio from (R)-amino acid
Alanyl	1:1.20	1:1.18
Phenylglycyl	1.22:1	1.22:1
Phenylalanyl	1.32:1	1.17:1
Valyl	1.63:1	2.05:1
Isoleucyl	2.30:1	2.03:1
CH(Bu ^t)CO ₂ H	7.10:1	<u></u>

^a o-Phthaldialdehyde (0.1 mmol) and the amino acid (0.1 mmol) were dissolved in $[{}^{2}H_{4}]$ acetic acid (0.3 ml) (occasionally the sample had to be warmed to effect solution). $[{}^{2}H_{6}]$ Benzene (0.3 ml) was added to assist spectral resolution and the n.m.r. spectrum was run after *ca*. 0.5 h. Ratios refer to the diastereoisomer with the lower δ value first.

suggesting the deuterium is delivered more efficiently via the intramolecular route (17, arrows) rather than intermolecularly. Diastereoface selectivity for the protonation step (17) \rightarrow (18) is observed with one diastereoisomer predominating in all cases (Table 2). Both (S)- and (R)-amino acids give identical or very similar ratios of diastereoisomers (Table 2) as expected for intramolecular deuteron transfer via (17).§

The proton H_B (Scheme 1) is essentially non-labile under the reaction conditions as shown by lack of incorporation of deuterium at this site and by the slow racemisation of optically active (5, R¹ = Me, R² = H), $[\alpha]_D^{25} + 8.8^\circ$, in glacial acetic acid ($[\alpha]_D^{25} + 7.4^\circ$ after 2.5 days at 25 °C).

Roth introduced the combination *o*-phthaldialdehyde and mercaptoethanol for the fluorimetric detection of α -amino acids.⁴ The reagent is more sensitive than ninhydrin for α -amino acids and is used in borate buffer at pH 9.5. Subsequently it was shown that the species responsible for the fluorescence were isoindoles.⁵ Our reactions are performed under acid catalysis in the absence of mercaptans and are thus diverted to the isoindolin-1-ones.

We thank Queen's University for support.

Received, 10th April 1985; Com. 481

References

- 1 R. Grigg, H. Q. N. Gunaratne, and J. Kemp, J. Chem. Soc., Perkin Trans. 1, 1984, 41; R. Grigg, Bull. Soc. Chim. Belg., 1984, 93, 593.
- 2 R. Grigg and H. Q. N. Gunaratne, *Tetrahedron Lett.*, 1983, 24, 4457.
- 3 R. Grigg and S. Thianpatanagul, J. Chem. Soc., Chem. Commun., 1984, 180; R. Grigg, M. F. Ali, V. Sridharan, and S. Thianpatanagul, *ibid.*, 1984, 182.
- 4 M. Roth, Anal. Chem., 1971, 43, 880; K. S. Lee and D. G. Drescher, J. Biol. Chem., 1979, 254, 6248.
- 5 S. S. Simons and D. F. Johnson, J. Am. Chem. Soc., 1976, 98, 7098.

[†] It is recognised that the hydride shift could occur via a monohydroxyamine monoaldehyde intermediate.

 $[\]ddagger$ No [²H₂]-species were detected but about 70% monodeuteriation occurred. [²H₀]-Product arises owing to the competition from protons of water liberated during the reaction and to the use of undeuteriated amino acids.

[§] Assuming deuteron transfer occurs to the face remote from R in (17), then (S)-amino acids should give the (R)-configuration, and (R)-amino acids the (S)-configuration, at the new chiral centre in monodeuterio-(18).